Is the indirect forcing by aircraft soot positive or negative?

Cheng Zhou and Joyce Penner University of Michigan

18th annual CESM workshop, 19th, June, 2013

Object of this study

- Effect of aircraft soot as heterogeneous Ice Nuclei (IN) on large scale cirrus clouds (NOT <u>linear contrail</u> or <u>contrail</u> <u>cirrus</u>):
 - Radiative forcing
 - Hydrologic cycles

Methodology

- We used a coupled CAM5/IMPACT model. The IMPACT module simulates a total of 17 aerosol types and/or size bins:
 - 3 sizes representing the number and mass of pure sulfate aerosols (i.e. nucleation, Aitken and accumulation modes),
 - 3 types of fossil/bio-fuel soot that depend on its hygroscopicity or the amount of sulfate on the soot
 - 1 biomass soot mode
 - 4 dust sizes
 - 4 sea salt sizes
 - 2 aircraft soot modes (preactivated in contrails or not)
- The preactivated aircraft soot is added as extra heterogeneous Ice Nuclei (IN) to the CAM5/MAM3 in the cirrus ice nucleation process.

Ice nucleation parameterization in cirrus clouds in CAM5

- The standard CAM5 set-up uses ice parameterizations by Liu and Penner [2005] and Liu et al. [2007].
- It features competition between Homogeneous freezing on sulfate & heterogeneous nucleation (Immersion freezing on dust)

Aircraft soot emission

1. Year 2006 emission from Aviation Environment Design Tool (AEDT).

2. We used hourly emissions of both BC and OM.

Aircraft soot acting as ice nuclei (IN) – 20%

- Based on the CoCiP model (Schumann, 2012)
- 20% is "preactivated" in contrails
- has a lifetime of ~30 days

Aircraft soot acting as ice nuclei (IN) - ~0.6% Based on Schimdt-Appleman Criteria

- - ambient T < Tcritical</p>
 - ambient RH < RHcritical
 - RHi > 1 (persistent contrail cirrus)
- ~8% forms persistent contrail cirrus
- lose its capability to act as an IN if more than 3 monolayers of sulfate deposited on it
- final fraction ~0.6%
- has a lifetime of ~2 days

Zonal mean "preactivated" aircraft soot number

Background sulfate/dust numbers used in LP scheme

- 1. Note that different scales are used in left and right graphs.
- 2. The sulfate number is about 1-2 order larger in the left graph.

Background sulfate/dust numbers used in LP scheme

Dust # (Accumulation + coarse)

Dust # (coarse mode only)

Case set-up

4 combinations of background sulfate and dust numbers used in the ice nucleation.

	Case	Sulfate #	Dust #
1	HL	High	Low
2	ΗН	High	High
3	LL	Low	Low
4	LH	Low	High

Base cases: Zonal mean ice number

20% cases - Effect on ice number

20% cases - Effect on ice water path

-13.5 -9 -4.5 0 4.5 9 13.5 **1. Similar patterns : increase in NH, decrease in tropical oceans.**

2. regional maganitude varies.

20% cases - Effect on net long wave flux

2. regional maganitude varies.

20% cases - Effect on total flux

- 1. Dominated by the change of long wave flux.
- 2. Negative forcing for high sulfate cases
- 3. Positive forcing for low sulfate cases

20% cases - Effect on hydrologic cycle: total water vapor

-1.35 -0.9 -0.45 0 0.45 0.9 1.35

- 1. Decreased temperature, precipitable water vapor in tropics.
- 2. Increased convection cloud fraction/convection precipitation.
- 3. Cleary sky cooling is not negligible.

0.6 % cases - Effect on long wave flux

- 1. 50-year simulations13.5 -9 -4.5 0 4.5 9 13.5
- Pass Student-t test with a confidence level of 90% in major cooling and warming regions.

0.6 % cases - Effect on total forcing

2.

Conclusions

- The global mean radiative forcing of aircraft soot on large-scale cirrus strongly depends on the background ice nucleation(ie., sulfate number). It ranges from -0.70 W/m2 to +0.81 W/m2.
- For the default CAM5 case, it is +0.81 W/m2 (20% case) and +0.09 W/m2 (0.6% case).
- 3. Regional forcing is sensitive to the fraction of aircraft soot acting as IN.

Zonal mean fraction of activated IN from homogeneous freezing

0.6 % cases - Effect on ice number

22

- **1. Decreased IWP in tropical India ocean;**
- 2. Increased IWP in central/north Africa.

Summary 1-20% cases

Change of radiative properties from 20% IN cases

Summary 2-0.6% cases

Change of radiative properties from ~0.6% IN cases

20% IN	Wsub=0.2 m/s			Wsub=0.1 m/s				
cases	H	HH	L	L.H.	НЛ	HH	L	L .H.
	sulf d	• sulf•	L _{sulf} Ld	L sulf d	• sulf•d	• sulf•	LsulfLd	L sulf I d
ΔCF	-0.09	0.06	<u>ust</u> 1.04	0.83	0.64	0.80	1.08	0.83
ΔSWCF	2.88	1.76	-0.89	-1.08	2.31	1.42	-0.90	-0.90
ΔLWCF	-2.97	-1.70	1.92	1.91	-1.67	-0.62	1.98	1.72
ΔFNT	-0.70	-0.33	0.81	0.81	0.11	0.65	0.83	0.79
ΔFSNT	2.82	1.67	-0.83	-1.03	2.26	1.45	-0.87	-0.91
ΔFLNT	-3.52	-2.00	1.64	1.84	-2.15	-0.80	1.70	1.70
ΔFSNTC	-0.06	-0.09	0.06	0.05	-0.05	0.04	0.03	-0.02
ΔFLNTC	-0.55	-0.30	-0.27	-0.07	-0.47	-0.18	-0.28	-0.03
ΔIWP	-1.05	-0.27	1.57	1.57	-0.09	0.39	1.25	1.08
ΔLWP	-1.02	-0.41	0.15	0.29	-0.97	-0.50	0.25	0.24
ΔPRECT	0.08	0.06	-0.02	-0.03	0.05	0.03	-0.03	-0.03
ΔPRECC	0.09	0.07	0.00	-0.01	0.08	0.06	-0.01	-0.02
ΔPRECL	0.00	-0.01	-0.02	-0.02	-0.03	-0.03	-0.01	-0.01
ΔTMQ	-0.59	-0.37	0.07	0.08	-0.52	-0.35	0.11	0.142

0.6% IN	Wsub=0.2 m/s			Wsub=0.1 m/s				
cases								
	H _{sulf} L _d	H _{sulf} H _d	L _{sulf} L _{du}	$L_{sulf}H_d$	$H_{sulf}L_d$	H _{sulf} H _d	L _{sulf} L _{du}	L _{sulf} H _d
	ust	ust	st	ust	ust	ust	st	ust
ΔCF	-0.23	-0.19	0.10	0.09	-0.25	0.03	0.09	0.10
ΔSWCF	1.36	0.85	0.42	0.21	1.43	0.84	0.28	0.12
ΔLWCF	-1.59	-1.04	-0.33	-0.12	-1.68	-0.82	-0.20	-0.02
ΔFNT	-0.35	-0.29	0.09	0.09	-0.35	-0.02	0.13	0.15
ΔFSNT	1.33	0.83	0.41	0.23	1.40	0.86	0.31	0.11
ΔFLNT	-1.68	-1.12	-0.32	-0.14	-1.75	-0.88	-0.18	0.04
ΔFSNTC	-0.03	-0.03	-0.01	0.02	-0.03	0.01	0.03	-0.01
ΔFLNTC	-0.10	-0.07	0.01	-0.02	-0.07	-0.06	0.02	0.05
ΔIWP	-0.87	-0.53	-0.23	-0.08	-0.76	-0.31	-0.15	-0.01
ΔLWP	-0.55	-0.28	-0.25	-0.16	-0.54	-0.27	-0.14	-0.06
ΔPRECT	0.03	0.02	0.00	0.00	0.04	0.02	0.01	0.00
ΔPRECC	0.03	0.02	0.01	0.00	0.05	0.03	0.01	0.00
ΔPRECL	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.01	0.00
ΔTMQ	-0.25	-0.16	-0.09	-0.05	-0.27	-0.17	-0.08	-0.04